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Abstract: Digital health applications using Artificial Intelligence (AI) are a promising opportunity to
address the widening gap between available resources and mental health needs globally. Increasingly,
passively acquired data from wearables are augmented with carefully selected active data from
depressed individuals to develop Machine Learning (ML) models of depression based on mood
scores. However, most ML models are black box in nature, and hence the outputs are not explainable.
Depression is also multimodal, and the reasons for depression may vary significantly between
individuals. Explainable and personalised models will thus be beneficial to clinicians to determine
the main features that lead to a decline in the mood state of a depressed individual, thus enabling
suitable personalised therapy. This is currently lacking. Therefore, this study presents a methodology
for developing personalised and accurate Deep Learning (DL)-based predictive mood models for
depression, along with novel methods for identifying the key facets that lead to the exacerbation of
depressive symptoms. We illustrate our approach by using an existing multimodal dataset containing
longitudinal Ecological Momentary Assessments of depression, lifestyle data from wearables and
neurocognitive assessments for 14 mild to moderately depressed participants over one month.
We develop classification- and regression-based DL models to predict participants’ current mood
scores—a discrete score given to a participant based on the severity of their depressive symptoms.
The models are trained inside eight different evolutionary-algorithm-based optimisation schemes that
optimise the model parameters for a maximum predictive performance. A five-fold cross-validation
scheme is used to verify the DL model’s predictive performance against 10 classical ML-based
models, with a model error as low as 6% for some participants. We use the best model from the
optimisation process to extract indicators, using SHAP, ALE and Anchors from explainable AI
literature to explain why certain predictions are made and how they affect mood. These feature
insights can assist health professionals in incorporating personalised interventions into a depressed
individual’s treatment regimen.

Keywords: mood prediction; mood score; mood-state classification; depressive-mood prediction;
wearable data; deep learning; explainable model; explainable AI; model optimisation

1. Introduction

Depression is a disorder involving a loss of pleasure or interest in activities for long
periods and is associated with sustained mood deterioration [1]. It can affect several aspects
of life, including relationships and work. According to the World Health Organisation
(WHO) 2023 estimates, 5% of adults (approximately 300 million) worldwide experience
depression, with women 50% more likely to experience depression than men. It is a
significant contributor to the 700,000 suicides every year around the world [2]. Despite this,
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more than 75% of people in low- and middle-income countries receive no treatment due to
a lack of investment in mental health, a lack of healthcare professionals and social stigma
associated with mental health disorders [2]. For those who receive treatment, antidepressant
medications are often the first line of treatment. However, they have a low effectiveness
as only one-third of all patients show symptom remission, as evidenced in large clinical
trials [3,4].

Therefore, interest has grown towards approaches that supplement clinical interven-
tions. Studies have shown that lifestyle interventions, such as better sleep hygiene [5], prac-
tising mindfulness [6], physical activity interventions [7] and dietary interventions [8–10],
have promise in managing depression [11]. Given the prevalence of devices with sensors
that can be used to monitor lifestyle activities, such as smartphones and smartwatches, re-
searchers are proposing using such devices to detect, monitor and manage depression [12].
The use of wearable technology to supplement clinical approaches is particularly appeal-
ing as it is unobtrusive, real time, often passive (requiring little or no active input by a
depressed individual/patient), of finer granularity (more data in the same time period)
and allows assessments to occur in the person’s usual environment [13].

As changes in mood and consistently low mood are often associated with depression,
studies have tried to use mood as an indicator to monitor and predict the progression of
depression. Previous studies have used data from various sensors on wearable devices
to either detect or predict future changes in mood. They have used GPS location [14–16],
phone- and app-usage patterns [17–19], voice and ambient noise [20] and motion sensor
information [21]. An Ecological Momentary Assessment [22] has also been used to predict
mood [23,24] in depressed individuals. These studies have focused primarily on using
Machine Learning (ML) and its subtype Deep Learning (DL) models to develop predictive
models owing to their excellent ability to learn associations in complex data. Moreover,
other studies categorise the sensor data into activity data, sleep data, heart data or phone-
usage data and then build ML- and DL-based predictive models by using them [21,25–31].

Nevertheless, most previous studies using ML- and DL-based predictive models have
focussed on cross-sectional research, despite the failure of cross-sectional studies to apply
to larger, more representative samples [32]. Moreover, cross-sectional works fail to account
for the substantial interindividual variability in clinical response to the same treatment or
behavioural recommendations for depression due to genetic, environmental, behavioural,
lifestyle and interpersonal risk factors [33,34]. Personalised models built on longitudinal
data are more suited to account for such variability. Therefore, recent works have begun
focusing on personalised predictive models for depression [16,23,25,35].

Furthermore, predicting mood scores is often insufficient in a clinical setting. Most
ML and DL approaches are black-box approaches, i.e., they do not show how they reached
a prediction [36]. Without explaining why a model predicts a mood score, healthcare
professionals cannot determine what insights the prediction contains [37]. These insights
can then be used to check a model’s fidelity (whether the model predictions make sense) [38]
and suggest interventions that help manage the symptoms in a personalised fashion.

Recent advances in explainable Artificial Intelligence (XAI) offer solutions to the
problem of trustworthiness in ML and DL models. Explainable models (we use the terms
explainability and interpretability interchangeably in this work [38]) such as Decision
Trees [36] can be easily processed/simplified to explain their outputs [39]. However, their
expressive power is limited by their size, and increasing their expressiveness decreases their
interpretability. DL models can make more complex associations from multimodal data and
yield better-performing models [37,40] but are not explainable [36]. With the availability
of post hoc explainable methods, such as Shapley Additive Explanations (SHAP) [41]
and Local Interpretable Model-agnostic Explanations (LIME) [42], explaining performant
black-box DL models has become easier [36].

Studies such as [43–45] use explainability techniques on ML models to obtain insights
into the model outputs. Moreover, recent works have begun exploring explainability in
mental health settings [24,46–49]. However, the use of explainability has been limited to
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the extraction of the most influential model features/inputs using SHAP or LIME [50].
Despite the high expressive power of DL models, the suitability of personalised models for
depressive-mood prediction and the utility of explainable AI in establishing trustworthiness,
the use of explainables in personalised DL mood-score prediction is currently lacking in
academic literature.

Therefore, this work developed a novel DL-based post hoc explainable framework for
personalised mood-score prediction. The models can be used to predict current mood scores
from current biophysical signals and explain how patients’ activities affect their mood
scores, suggesting possible indicators upon which to intervene for healthcare professionals
and patients (for self-management). We illustrate our approach by using an existing
multimodal dataset (from [24]) containing longitudinal Ecological Momentary Assessments
(EMAs) of depression, data from wearables and neurocognitive sampling synchronised
with electroencephalography for 14 mild to moderately depressed participants over one
month. The work in [24] established the possibility of applying Machine Learning to a
multimodal depression dataset with personalised prediction. We significantly extend that
work by making three main contributions:

• A parallelised DL modelling and optimisation framework is proposed that helps train
and compare multiple Multilayer Perceptron (MLP) DL models to predict participants’
mood scores=—a discrete score used to assess the severity of patients’ depressive
symptoms. The MLP framework exceeds the performance of 10 classical ML models.

• Multiple post hoc explainable methods [36] are combined to provide comprehen-
sive insights into which biophysical indicators contribute most to a participant’s
mood scores.

• The generation and analysis of rule-based (IF–THEN) explanations for individual
mood scores are presented.

2. Materials and Methods

The dataset used in this work was published previously [24]. This dataset was gathered
following a one-month study of 14 adult human subjects (with a mean age of 21.6 ± 2.8 years
and ten females) before the onset of the COVID-19 pandemic.

2.1. Study Summary

Human participants were recruited to the study from the University of California San
Diego College Mental Health Program [51]. The study included participants experienc-
ing moderate depression symptoms assessed by using the Patient Health Questionnaire
(PHQ-9) scale [52]. Participants with PHQ-9 scores greater than nine were included, with
participant scores ranging between 10 and 17. While no structured interview was conducted
for this study, suicidal behaviours were screened by using the Columbia Suicide Severity
Rating Scale [53]. Any participants on psychotropic medications maintained a stable dose
throughout the one-month study, and no participants demonstrated suicidal behaviours
during this study. The study protocol was approved by the University of California San
Diego institutional review board, UCSD IRB# 180140.

The data were collected through two data-acquisition modes. First, lifestyle and
physiological data were collected by using a Samsung Galaxy wristwatch (wearable) that
all participants wore throughout the study, except while charging the watch for a few
hours once every 2–3 days. Participants also used an application named BrainE on their
iOS/Android smartphone [54] to register their daily Ecological Momentary Assessments
(EMAs) four times a day for 30 days. During each EMA, participants rated their depression
and anxiety on a 7-point Likert scale (with severity increasing from 1 to 7), participated
in a 30 s stress assessment and reported their diet (e.g., fatty and sugary food items
consumed from a list provided and servings of coffee). Also, neurocognitive and EEG
data were collected during assessments in a lab on days 1, 15 and 30 of the one-month
study. Participants completed six cognitive assessment games to assess inhibitory control,
interference processing, working memory, emotion bias, internal attention and reward
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processing. Finally, the gathered raw data, which had different sampling frequencies—
seconds to minutes for the smartwatch data, hours for the EMA data and days for the
neurocognitive data, were reconciled through aggregated or extrapolation to match the
sampling frequency of the output variable, i.e., depressed mood scores.

2.2. Dataset

The raw dataset contained 48 features (or predictors) for each participant. We removed
three speed-based features (such as the cumulative step speed) as they were computed
from noisy distance features. Of the remaining 45 features, we chose 43 input features
(i.e., inputs to a model), 1 output feature (i.e., the predicted feature) and 1 feature to preserve
timing information. The input features included both the smartwatch and neurocognitive-
assessment data. Sixteen input features were obtained from the Samsung wearable, and the
remaining twenty seven were obtained from the neurocognitive assessments. The wearable
and EMA features collected from the smartphone are presented in Table 1. Supplementary
Table S1 of [24] describes the remaining features.

Moreover, the feature depressed with a value between 1 and 7 was used as the output
feature. The severity of the depressed mood increases from 1 to 7, with 1 indicating feeling
not depressed and 7 indicating feeling severely depressed. The datestamp feature was used
to order the dataset chronologically before any data preprocessing was performed. Table 2
contains sample information for each participant, and Figure 1 shows the output-label
distribution for each participant.

Table 1. Summary of features acquired using EMA and smartwatch.

# Feature Description

1 distracted EMA-based 1–7 ratings of “How distracted do you feel right now?” acquired
four times per day alongside the depressed-mood ratings

2 anxious EMA-based 1–7 ratings of “How relaxed versus anxious do you feel right now?”
acquired four times per day alongside the depressed-mood ratings

3 MeanBreathingTime Mean breathing time of the 30 s active stress assessment acquired four times 4×
per day alongside the depressed-mood ratings

4 Consistency Consistency of breathing in the 30 s active stress assessment acquired 4× per day
alongside the depressed-mood ratings

5 past-day-fats Total fatty items consumed in the 24 h prior to each depressed-mood rating
6 past-day-sugars Total sugary items consumed in the 24 h prior to each depressed-mood rating
7 past-day-caffeine Total cups of caffeine consumed in the 24 h prior to each depressed-mood rating

8 heart rate Smartwatch-based heart rate as the mean heart rate in the ±30 min window
around each depressed mood EMA

9 ppg-std
Heart Rate Variability from the Tizen Photoplethysmography data as the
standard deviation within the ±15 min window around each
depressed-mood EMA

10 cumm-step-count Cumulative step count taken as the mean value from the past 12 h of each
depressed-mood rating

11 cumm-step-calories Cumulative step calories burnt taken as the mean value from the past 12 h of
each depressed-mood rating

12 cumm-step-distance Cumulative step distance taken as the mean value from the past 12 h of each
depressed-mood rating

13 cumm-exercise-calories Cumulative exercise calories burnt taken as the mean value from the past 24 h of
each depressed-mood rating

14 cumm-exercise-duration Cumulative exercise duration taken as the mean value from the past 24 h of each
depressed-mood rating

15 prev-night-sleep Number of hours of sleep the previous night of each depressed-mood rating

16 time_of_day Time of the day when a particular depressed-mood rating was taken:
(6:00, 10:00], (10:00, 14:00], (14:00, 18:00] and (18:00, 23:59]
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Figure 1. The number of each label/output class per participant. The output class is the mood state
captured by the feature depressed.

Table 2. Summary of samples for each participant. The Missing Values column shows the number of
missing data points out of all the data points for the participant, which is 43 (number of features)
times the total number of samples for that participant.

Participant Total Samples
Missing Values

(Out of 43 × Total
Samples)

Features with
Missing Values

1 110 28 1
10 123 108 27
12 100 116 31
14 34 1 1
15 90 0 0
18 34 0 0
19 117 18 1
20 66 11 1
21 119 0 0
23 102 0 0
24 120 21 1
26 112 10 4
28 105 0 0
29 66 9 1

As seen from Table 2, nine out of fourteen participants have features where some
values are missing. This could be due to device error or participant behaviour (e.g., a
participant may forget to wear the smartwatch for a few hours). However, there are no
samples where all the feature values/data points are missing. Also, the total number of
samples varies between the participants. Participants 14, 18, 21 and 29 have fewer samples,
which could have a bearing on the performance of the models [40].

Moreover, we can see from Figure 1 that the label classes (depressed-state values)
across participants are not balanced. This is expected as the participants are mild to
moderately depressed, and the highest and lowest ends of the depressed mood scale (which
correspond to no depression and severe depression, respectively) will be rarely represented.
As this is an expected behaviour and we want the model to learn this behaviour, we do not
use any methods to balance the dataset prior to training.

Furthermore, we noticed that a few participants (such as Participants 10, 15, 18, 21
and 23) had a few features with constant values, i.e., the same value repeated for each
sample. This may make sense for neurocognitive-assessment features (where a participant
may perform consistently on the tests) but not for features acquired through the wearable.
For instance, a participant would be highly unlikely to have the same nonzero value for
features like exercise calories or heart rate for 30 days. We deal with invalid and missing
values in the following data-preprocessing section.
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2.3. Data Preprocessing

As the dataset contained missing data points and invalid values, we preprocessed
the data by using three data-preprocessing methods and built models for each to compare
which method suited the dataset. We started with a simple data-preprocessing method and
progressively increased the algorithm’s complexity.

For the first method, we used Deletion to ensure that each participant had all 43 fea-
tures with no missing data points. We began by removing the participants with constant
smartwatch feature values. This step eliminated Participants 10, 15, 18, 21, 23 and 24. Then,
we removed the samples/rows with any missing data. This step reduced the number
of samples for some participants. However, this method was the most straightforward
data-preprocessing method we used and provided a good baseline against the more so-
phisticated data-preprocessing methods discussed next.

For the second method, we used Manual Imputation, which utilised information on
the data type (discrete, continuous or neurocognitive) in a feature to impute/fill data.
We removed the wearable features (data acquired from the smartwatch) where all values
were constant and incorrect. Next, for features with discrete data, the missing values in
a feature column were imputed with its most frequent value. In contrast, for features
with continuous data, the missing values were imputed by using an iterative method that
computes the missing values in each feature by considering it as a function of all other
features in a round-robin manner (see Iterative Imputer in Table 3) [55]. Finally, we imputed
the missing values in the neurocognitive features with zero, as a zero in an assessment
typically implies an empty/void assessment.

Table 3. Summary of methods used for handling missing data in a feature column.

Method Description

Mean Fill missing data with the mean of the available data
Median Fill missing data with the median of the available data
Forward fill Fill missing data by continuing the last available data
Backward fill Fill missing data by continuing the next available data
Linear interpolation Fill missing data through linear interpolation by using the data points before and after the missing data

Iterative Imputation [56]
A strategy for imputing missing values by modelling each feature with missing values as a function of
other features in a round-robin fashion. This method only uses samples with no missing data as the
input (in case multiple features in a data point have missing values)

KNN Imputation [57] Each sample’s missing values are imputed by using the mean value from some nearest neighbours in
the training set. Two samples are close if the features that neither are missing are close.

For the third method, we employed Automatic Imputation, which automated the
imputation stage. We removed the wearable features where all values are constant and
incorrect. Next, we handled missing data by choosing a data-imputation method that
preserved the original data distribution. Instead of manually choosing an appropriate
method, we automated the process and seven different data-filling methods for each
feature with missing values. The chosen methods are summarised in Table 3. Finally, we
compared the methods by using the distribution of the filled-in feature and the original
feature vectors. For this, we used the two-sample Kolmogorov–Smirnov (KS) test, which
compares two distributions by finding the maximum difference between the Cumulative
Distribution Functions (CDFs) of the two distributions [58]. As different methods were
chosen for different features for every participant, we decided against reporting them
here to maintain the succinctness of the paper. More information about the approaches
discussed in this section can be found in Appendix A.1.1.

2.4. Model Development

Since the depression scale is ordinal, i.e., there is an order in the value of the depres-
sion/mood score, and it increases from 1 to 7, we can consider the current mood-score-
prediction problem as either a regression or classification problem [59]. As a regression
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problem, the model will be concerned with developing a model that predicts values close
to the actual mood scores. On the other hand, a classification model considers the mood
scores as seven classes and tries to predict a class based on the input. We used MLP models
to build the regression and classification models. Also, we used ten common regression
and classification classical ML models to build baseline models against which to compare
the performance of MLP models. Moreover, we built the models for the different types of
data-imputation schemes (see Section 2.3). The MLP model-development framework is
shown in Figure 2.

2.4.1. Base Model

We built a set of base models to act as a baseline for the predictive performance of
MLP models on the dataset. We trained ten common classical ML algorithms (eight of
which were used in [24]) on the three preprocessed datasets for each participant: Adaboost
Regressor, Adaboost Classifier, Elasticnet Regressor, Gradient Boosting Classifier, Gradient
Boosting Regressor, Poisson Regressor, Random Forest Classifier, Random Forest Regressor,
Support Vector Classifier and Support Vector Regressor. Also, we used a simple grid
search (as used in [24]) to tune the hyperparameters of the models. The grid search is a
brute-force method that tries all possible combinations of hyperparameters and chooses
the combination that provides the best prediction performance.

Furthermore, a Stratified 5-fold Cross-Validation (CV) scheme was used to validate
the model performance during and after training. This scheme divides the normalised
dataset into five parts, trains a model on the four parts (the training dataset) and tests on
the remaining part (the testing dataset). It does so in a round-robin fashion. The division is
stratified, meaning each fold contains the same proportion of the different output labels. So,
for a 5-fold CV, we built five separate models (with the same architecture) on five training
and test datasets. The overall performance was obtained by taking the mean of the training
and test performance values over the five sets. Also, the test datasets do not overlap
between the folds. This method ensures that the evaluation of the model is free of data-
selection bias, which may arise when using a simple train–test split, as the performance
depends on the particular split of the train and test set.

For each participant, the model (out of the ten) with the lowest Mean Absolute Error
(MAE) after hyperparameter tuning, irrespective of classification or regression, was chosen as
the base model. More details on the grid search and the hyperparameters used for each model
are provided in Appendix A.3. Note that the base models were only used for performance
comparison with the MLP models and were not used for a model-explanation comparison as
the explainability of such models in a mood-prediction setting has been explored in [24].

2.4.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks of artificial neurons that attempt to
model the behaviour of biological neurons by using mathematical functions composed of
linear computations and nonlinear functions called activations, such as sigmoid, hyperbolic
tangent (tanh) and others [40]. Through training, ANNs determine nonlinear relationships
between a provided set of inputs and their corresponding outputs. They are often designed
as networks of several layers with an input layer, a few hidden layers and an output
layer in succession [40]. Many types of ANNs exist, including Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), with the most basic type being
a Multilayer Perceptron (MLP) network. Once trained over the data, the networks make
inferences when exposed to new but statistically similar input data [40]. This ability allows
them to perform tasks such as the classification or regression of input data and language
translation. MLPs are particularly well suited for tabular data and are used in this work.
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Figure 2. The proposed mood-score-prediction framework for the MLP models discussed in this paper.
This framework is repeated for all 14 participants. We begin at the top with data preprocessing. The
preprocessed data are then used to train classification- and regression-based MLP models. The best
models from the classification and regression training (using 5-fold Cross-Validation) and optimisation
are compared to find the best overall models with minimum Mean Absolute Error (MAE). This best
overall model is then used to obtain model explanations by using SHAP, ALE plots and Anchor rules.
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2.4.3. MLP Model Architecture

The model architecture differed between the regression and the classification models.
As mentioned in the previous section, we used ANNs (MLP) to build the model. While
both models had an input layer, a few hidden layers and an output layer, the number of
neurons in the output layer differed between the regression and classification model. As a
regression model predicts a single continuous output value for each input, all regression
models used only one neuron in the output layer with no activation.

On the other hand, the classification models had seven neurons corresponding to the
seven classes (mood scores). Outputs from the neurons were normalised (squashed) by
using a softmax activation. These squashed values (for each neuron) lie between 0 and 1
and represent the probability of an input belonging to that class. The class corresponding
to the highest probability value was taken as the output. Model hyperparameters, such
as the actual number of layers, the number of neurons in each layer and the activation
for each layer, were determined by a hyperparameter-optimisation algorithm described in
Section 2.4.5.

2.4.4. MLP Model Training

All models were built and trained in Python by using a loss function and an optimiser.
The loss function evaluates the model prediction against the actual output value and
produces a numeric value based on how different the prediction and the actual values
are. Moreover, the optimiser optimises/modifies the weights/parameters of the ANNs to
minimise the loss.

For the classification models, we used a version of the cross-entropy loss (see Equation (1))
called the Sparse Categorical Cross-Entropy. The regression models used either the Mean
Squared Error (MSE) or the MAE between the predicted and actual values as the loss function.
We used a version of stochastic gradient descent called the Adam [60] optimiser to minimise
the loss function LCrossEntropy of all models.

LCrossEntropy =
C

∑
i=1

y · log ŷ (1)

where C is the number of classes in the data, y is the expected output and ŷ is the pre-
dicted output.

The preprocessed dataset was time-sorted based on the timestamps and normalised
before being fed into the training models. This normalisation ensures a smoother conver-
gence of the loss function. We used the standard normalisation procedure. It centres the
data around zero and gives the dataset a unit standard deviation. In this work, we standard-
normalised the preprocessed data by subtracting the feature means (µ) from each feature
and dividing the result by the standard deviation (σ) of the feature (see Equation (2)).

X =
X − µ

σ
(2)

We used a Stratified 5-fold Cross-Validation (CV) scheme to validate the model perfor-
mance during and after training, similar to the base-model evaluation. The samples in the
normalised folds were then randomised and fed into the MLP models for training, i.e., the
MLP models took an input of shape N × F, where N is the number of input samples and F
is the number of features.

Moreover, we followed these steps for all MLP models built for regression and classifi-
cation, irrespective of the data-imputation method. We trained each model by using batches
of train data for 100 epochs, i.e., for 100 iterations of the entire training data (divided into
batches). We only saved the best model across the epochs and used the early-stopping
strategy, which stops the training before the epochs finish if the model’s performance does
not improve for a certain number of epochs. Early stopping helps ensure that the models
do not overfit the training data [40]. Figure 2 shows the training framework.
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2.4.5. MLP Model Optimisation

It is usually challenging to infer the architecture of an ANN that gives the best possible
performance, as multiple model and training parameters often influence the performance
of an ANN. Instead of manually choosing and tweaking a few parameters to obtain
better performance, as we do with the base models, we used an automated method. We
chose multiple Evolutionary Algorithm (EA)-based algorithms and stochastic algorithms to
optimise the main model and training parameters (called hyperparameters in ML parlance)
for a better prediction performance.

We used eight different EA and statistical methods to optimise the number of hidden
layers in the model, the number of neurons in the input layer, the activation of the hidden
layers and the training batch size. We optimised the number of neurons in the input layer but
did not optimise the neurons in each layer as that would increase the number of optimisation
variables. Increasing the number of optimisation variables increases the optimisation space,
making the optimisation problem more difficult. Instead, we linearly interpolated the neurons
in the hidden layers by using the number of neurons in the input layer and the number
of neurons in the output layer (which depends on whether the model is classification or
regression). The eight EA methods we used and the parameters we modified are mentioned
in Table 4. We use N.A wherever the default optimisation parameters were used. Table 5 also
contains upper and lower limits for each hyperparameter used during the optimisation.

Table 4. Summary of optimisation algorithms/methods used in hyperparameter optimisation.

Algorithm Summary Parameters

PSO [61] Particle Swarm Optimisation of the loss on hyperparameters based on a set
of particles (candidate solutions) with their inertia Population size: 10

DE [62]
Differential Evolution-based optimisation. It uses differences between
points in the population (candidate solution) for doing mutations in
fruitful directions

Population size: 10

ES [63] Evolution Strategy-based optimisation of hyperparameters is based on the
ideas of evolution Population size: 10

CMA ES [63]
Covariance Matrix Adaptation Evolutionary Strategy is a variation in ES
where the covariance matrix of the distribution is incrementally updated to
increase the likelihood of previously successful search steps

Population size: 10

Random Random search of the hyperparameter space N.A

Bayesian [64] Bayesian Optimisation of the loss on hyperparameters. Optimisation of
search space depends on the initialisation type

Initialisation: Latin Hypercube
Sampling

NgOpt [65] Nevergrad Library’s own optimiser N.A
Oneplusone [65] 1 + 1 optimisation of the loss on the hyperparameter space N.A

Table 5. Search values (or limits) for parameters during hyperparameters optimisation.

Hyperparameter Lower Limit Upper Limit Values

Number of layers 2 4 N.A
Neurons in input layer 30 60 N.A
Activation N.A N.A tanh, relu, elu, linear
Batch size N.A N.A 4, 6, 8

Figure 3 shows the optimisation schematic. The hyperparameter optimisation existed
as an outer loop to the inner loop of model training (which optimises the model weights).
The optimisation repeated over 100 iterations, during which the model was trained by
using the 5-fold CV procedure. We averaged the model performance over the five folds
and used that as the performance metric to optimise the hyperparameters. We used the
metrics F1-score and balanced-accuracy to optimise the classification models and used the
MSE and MAE to optimise the regression models. These metrics served as indicators of the
model performance and guided the optimisation process towards a set of hyperparameters
that provided the best model performance.



Sensors 2024, 24, 164 11 of 37

Maximum
Performance

Overall
Best ModelPreprocessed

Data

Best Model
for

Optimiser

Test Data

Model

Train Data

Model

Train
Performance Test Performance

Mean Mean

Test
Mean

Performance

Train
Mean

Performance

5 Folds

100 Iterations

8 Optimisers

Maximum
Performance

Figure 3. The optimisation procedure shows how the 5-fold Cross-Validation scheme is repeated for
100 iterations for each of the eight optimisers. Different metrics are used to find the best model for
the optimiser based on whether the model trained is a classification or a regression model. Similarly,
we use different metrics to find the overall best among the eight best models from the optimisers.

At the end of the 100 iterations, we took the best models, i.e., models with the best
mean 5-fold performance, from each method and found the best among the eight best (one
for each optimisation method) models as well. We used the same metrics to optimise the
hyperparameters and find the best models. The performance of these best models was then
taken as the best for a particular combination of the optimisation metric, problem type and
data-imputation method.

The optimisation procedure was entirely parallelised, and the number of parallel
processes was determined by the number of cores in the system used for optimisation and
training. We ran the optimisation (and training) in a Docker container containing all the
required Python libraries, such as TensorFlow–Keras (for training the models) [66] and
Nevergrad (for the optimisation) [65]. Parallelisation significantly reduced the optimisation
time, making the procedure scalable to a high number of optimisation iterations.

2.5. MLP Model Evaluation and Explanation

We gathered one best model for each combination of problem type (classification or
regression), data-preprocessing methodology (3 methods) and metric (2 metrics) used for
hyperparameter optimisation (i.e., 12 combinations). As both regression and classification
problems used different performance metrics except for the MAE and Mean Absolute
Percentage Error (MAPE) (which can be used for both kinds of models), we used the MAE
to find the best overall model as it corresponds to the absolute error and not the relative
error (like the MAPE).

Hence, for each participant, we collected the best models from the 12 combinations,
found the model with the lowest test MAE and used it as the overall best-optimised model.
This overall best model was the final model for the participant, and we used this to extract
indicators/features that were important as well as to explain how those features affect
mood. To this end, we used three post hoc explainability methods from the explainable AI
(XAI) literature [36]. We used Shapley Additive Explanations (SHAP) [41], Accumulated
Local Effects (ALE) plots [67] and Anchors [68].
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SHAP explains a prediction (a single prediction) of a data instance by computing the
contribution of each feature to the prediction and is a linear approximation to the Shapley
values. They are computed in relation to the average model prediction. Thus, a SHAP
value of −0.2 for a feature in a sample, for instance, would mean that the model prediction
decreases by 0.2 from the average for a change in that feature. Here, we used SHAP to
find the top five important features of each participant. We obtained one SHAP value per
data instance per feature, and to compute the global feature importance for a model and
a dataset, we took the mean of the absolute SHAP values for all instances in the dataset
to obtain the overall SHAP value of a feature. Also, when computing SHAP values, we
focused only on features acquired by using wearables and EMAs, as our focus was on
finding interventions that could be implemented in a depressed individual’s personal
environment, such as at home. Also, as we used a 5-fold Cross-Validation approach, we
found the SHAP values for each fold and averaged them.

Furthermore, ALE plots describe how certain features influence the model prediction,
and their value can be interpreted as the main effect of the feature at a certain value
compared to the average prediction of the data. ALE works well even when features are
correlated and is well suited for our moderately correlated dataset (see plot Figure A1).
In this work, we used ALE plots to find how the top-five important features obtained
through SHAP influence the model prediction. The plots show how the feature effects
on the prediction vary with the value of the feature. This gives us an idea of whether
a feature’s increase (or decrease) leads to a corresponding increase (or decrease) in the
model prediction compared to the average prediction. As before, we used the test dataset
to compute the ALE value for each fold and found the overall ALE value by taking the
mean of the ALE values obtained for the five folds.

Finally, Anchors explain a prediction on a data instance of any black-box classification
by finding an IF–THEN decision rule that anchors the prediction sufficiently. A rule is said
to Anchor a prediction if changes in other features do not affect the prediction. Moreover, it
includes the notion of coverage, stating which other, possibly unseen instances Anchors
apply. We used Anchors to show how specific predictions for classification models could
be explained in a rule-based manner. This made Anchors a good candidate to explain
anomalous changes in mood. Furthermore, to produce comprehensive rules, we considered
all features, including the neurocognitive-assessment features.

Additionally, all post hoc explainability methods take the un-normalised data as the input
(which is internally normalised before being fed into the models). Using un-normalised data
ensures that the explanations are produced in the actual data range, which makes it easier to
interpret. Appendix A.4 contains additional details about the explainability approaches used.

3. Results

In this section, we report the results of the best base models and the overall best MLP
models, computed as discussed in Section 2.5. As we build personalised models, we report
each participant’s results separately. We present the MAE and MAPE and their standard
deviations for the best models. Finally, we show the SHAP values, the ALE plots and the
Anchor rules for the participant MLP models.

3.1. Model Performance

The best MLP model obtained after optimisation is compared to the best base model
for each participant. Table 6 shows the average Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) values of the best base and MLP models on the five-fold
Cross-Validation test sets. All models in Table 6 have an MAE of less than or equal to one,
which implies that the difference between the actual mood score and the one predicted is,
on average, around one. We can also observe that the MAPE values are quite high (around
50%) for some participants even though their MAE values are around one. This is because
a high MAPE value can be obtained even if the difference between the actual and predicted
mood score is small and the actual mood score is also small. For instance, if the actual
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mood score is one and the predicted mood score is two, the MAPE value is 100%. However,
if the actual mood score is five and the predicted mood score is six, the MAPE value is 20%.
Hence, the MAE is a better metric than the MAPE for evaluating these models.

Table 6. Table containing the metrics for the best base and MLP models for each participant. The
values in bold indicate lower values. (MAE: Mean Absolute Error; MAE STD: Mean Absolute Error
standard deviation; MAPE: Mean Absolute Percentage Error in %; MAPE: Mean Absolute Percentage
Error standard deviation in %; P-1 to P-29 refer to Participants 1 to 29, respectively).

Subject ID
Model MAE MAPE

Subject ID
Model MAE MAPE

Mean STD Mean STD Mean STD Mean STD

P-1

Support
Vector
Classifier

0.336 0.145 7.971 2.920 P-10

Random
Forest
Classifier

0.697 0.113 18.911 5.051

MLP
Classifier 0.295 0.151 6.155 2.729 MLP

Classifier 0.715 0.089 19.839 4.426

P-12

Support
Vector
Classifier

0.575 0.077 27.900 7.483 P-14

Support
Vector
Classifier

0.904 0.146 46.644 20.866

MLP
Regressor 0.582 0.063 22.260 3.107 MLP

Regressor 0.829 0.327 36.152 17.918

P-15

Gradient
Boosting
Regressor

0.467 0.115 14.296 5.028 P-18

Random
Forest
Classifier

0.823 0.185 22.047 8.075

MLP
Regressor 0.494 0.050 13.114 1.583 MLP

Classifier 0.638 0.472 18.857 18.541

P-19

Gradient
Boosting
Regressor

1.072 0.171 60.931 19.505 P-20

Random
Forest
Classifier

0.636 0.181 19.757 6.854

MLP
Classifier 0.989 0.096 53.204 12.124 MLP

Classifier 0.455 0.249 13.515 6.165

P-21

Random
Forest
Classifier

1.152 0.298 41.876 16.714 P-23

Gradient
Boosting
Regressor

0.883 0.307 38.242 6.940

MLP
Regressor 1.103 0.216 53.113 11.710 MLP

Classifier 0.936 0.550 38.075 17.184

P-24

Support
Vector
Classifier

0.158 0.074 6.736 5.124 P-26

Gradient
Boosting
Regressor

1.098 0.213 33.008 9.015

MLP
Classifier 0.125 0.088 5.347 4.933 MLP

Regressor 1.013 0.149 32.206 8.699

P-28

Random
Forest
Classifier

0.609 0.173 19.710 6.624 P-29
Adaboost
Regressor 1.188 0.310 60.830 12.391

MLP
Classifier 0.562 0.163 17.565 6.398 MLP

Classifier 1.03 0.253 47.369 18.945

Moreover, the performance (MAE) of the MLP models is better (a lower MAE) than
the base models for 10 out of 14 participants, as evidenced by the bold values in Table 6.
Although the model hyperparameter search methodology differs between the MLP and the
base models, the comparison indicates how powerful the MLP models (a comparatively
simple DL method) are at learning meaningful representations for mood scores from digital
data. Also, the disparity in model type and performance can be attributed to the differences in
the participant datasets used to build the personalised models. Most participant datasets have
missing data and high data imbalance (a higher proportion of a specific mood score), and
depending on the type of imbalance and amount of good data available, it can make it difficult
or easier for certain models to learn associations from them. Overall, MLP models seem to be
better able to learn the representations between the input features and the mood score.
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Furthermore, Tables A1 and A2 show hyperparameter combinations and model pa-
rameters for the best MLP models reported in Table 6. We find that Deletion and Manual
Imputation are the best methods for handling missing data for the participants used in the
study. Also, classification models seem to outperform regression models for both the base
and MLP models. Of the 14 best MLP models, 9 are classification models and 5 are regression
models. Moreover, among the optimisers used to optimise the hyperparameters, Bayesian, DE
and PSO are the best methods. There is no visible correlation between the model type, choice
of hyperparameters and architecture among the participants, and it seems to be dependent on
the participant and the type of model. Appendices A.2 and A.3 contain more information on
the model hyperparameters and architectures used for the best models.

3.2. MLP Model Explanation
3.2.1. SHAP Explanation

Figure 4 shows the five features from the wearable- and EMA-acquired features
that affect the model prediction the most based on their SHAP values for three example
participants. Plots for all participants can be found in Appendix A.5. SHAP explains a
prediction (a single prediction) of a data instance by computing the contribution of each
feature to the prediction. We take the mean (average) of the absolute SHAP values for all
instances in the dataset and sort them to find the top five features in the figure.
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Figure 4. The figure shows the SHAP value effects for the top-5 features in the overall best models for
Participants 10, 19 and 24. The scatter plots depict the SHAP values for individual samples, with the
colour of the points denoting their magnitude. The bar plots superimposed on top shows the mean
of the absolute value of the SHAP values over all data points. The features are arranged based on the
magnitude of the average SHAP values. Plots for all participants can be found in Appendix A.5.
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Figure 5 further shows the overall (population level or for all participants) top feature
groups ranked by the number of times they appear in the top-five features, i.e., by their
frequency. The figure shows that diet-related features, such as past-day-sugars, past-day-fats
and past-day-caffeine, have the highest effect on mood-score prediction. This is followed by
anxiety-based features (measured through features like anxious, distracted and MeanBreath-
ingTime). Physical-activity-based features (such as cumm-step-count and cumm-step-calorie)
have an effect similar to anxiety-based features. Heart- and sleep-based features are the
least frequent top-five features and, hence, seem to have the lowest effect on mood scores.

Furthermore, the scatter plot in the figure shows the SHAP value (effect on mood
score) for different feature values. There is variability in how certain features affect mood
prediction. For instance, for Participant 10, low values for the feature anxious (see blue
dots for Participant 10 in Figure 4) lead to a decrease in model prediction by one in some
instances. Therefore, ensuring lower anxiety for this participant could be a suitable inter-
vention. For instance, an increase in past-day-caffeine decreases the mood-score prediction
for Participant 19, whereas the opposite is seen for Participant 24.
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Figure 5. The figure shows the top-5 feature groups in the overall best models for all participants. The
features are arranged based on the frequency of their appearance in the top-5 features. The groups
contain the following features. Diet: past-day-fats, past-day-sugars and past-day-caffeine; Anxiety and
Breathing: anxious, distracted, MeanBreathingTime and Consistency; Activity: cumm-step-count, cumm-step-
calorie, cumm-step-distance, exercise-calorie and exercise-duration; Heart: heart-rate and ppg-std; and Sleep:
prev-night-sleep.

3.2.2. ALE Plot Explanation

Although the scatter plots in the SHAP plots show how high and low values of the
features affect the model output, they are not good at showing trends. We use ALE plots to
see feature trends. Figure 6 shows the ALE plots for the top-five features obtained from
the overall best models by using a SHAP value analysis. These plots can help a physician
understand how the top predictors influence the model prediction (mood score) with their
values. While the plots for some features in some participants are quite simple, others
are more complex, denoting a heterogeneity in depressive severity and symptoms. The
feature-effect values (the ALE values) for participants will differ from SHAP as ALE plots
show only the feature effects separated from any correlation effects between the features
(which SHAP does not remove). Also, a positive value (or negative value) on the plot
signifies an increase (or decrease) in mood-score prediction. The ALE value in the plot
shows the magnitude of such effects.
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Figure 6. The figure shows the Accumulated Local Effects (ALE) plots for the top-5 features in
the overall best models for Participants 10, 19 and 24. The x-axis contains the feature values, and
the y-axis contains the ALE values. The ALE values denote the magnitude of the average effect of
a feature value on the model output, i.e., the mood score. Plots for all participants can be found
in Appendix A.5.

Taking the example of Participant 10, the ALE value of high anxious and distracted is
high. This implies that a high value of both features leads to an increase, i.e., an overall
increase in mood score (or depression). The effect of features is not consistent across
participants and may seem counterintuitive. For instance, for Participant 19, an increase in
past-day-caffeine (the amount of caffeinated items consumed last day) and past-day-sugars
(the amount of sugary items consumed last day) lead to a decrease in the mood score
(less depressed). This may seem counterintuitive as having too many sugary food items
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is generally unhealthy. In such instances, other explainable methods, such as SHAP and
Anchors (as discussed later), could be used to increase trust in the plots. Comparing these
results to the SHAP plot (see the scatter plots in Figure 4) for Participant 19, we see that
high values of past-day-caffeine and past-day-sugars decrease the SHAP value or the model
prediction of mood score. As the SHAP explanation aligns with the findings of the ALE
plots, it increases our trust in the ALE findings.

Figure 6 also shows that for some participants, such as Participant 24, the feature effect
of distracted is nearly zero. This does not necessarily mean the feature is unimportant or
has no trends. It may happen if one half of the dataset exerts a positive effect and the other
half a negative effect, one half cancelling the effect of the other half during averaging. Not
much helpful information can be gathered from the plots in such instances. Nevertheless,
ALE plots are one of the best to visualise any feature’s true-effect trends in the presence of
interactions/correlation between features.

3.2.3. Anchors Explanation

Finally, we show how Anchors can explain unusual mood scores by finding the best
decision rules (predicated on the features) that apply to a prediction. For instance, a
participant’s mood score may increase by three points (e.g., from 3 to 6), signifying a
sudden increase in depressive mood. We tag such instances as anomalous instances and
try to explain the prediction at and before the increase. By comparing the IF–THEN-based
rules obtained from Anchors before and after the anomaly, we can surmise what may have
changed in the observed features to elicit such a mood change.

The Anchors procedure takes in a sample corresponding to a mood-score prediction,
perturbs the sample to create artificial samples in the neighbourhood of the original sample
and finds the region (rules) in the perturbed neighbourhood where the decision rules do
not change the prediction. Since this method can only be used for classification models, we
use it on participants where the best model is a classification model. Also, we only use it
for instances where the prediction was correct to ensure that the rules have fidelity.

Also, Anchors allow the user to specify the maximum number of features to use when
finding the rules. This allows the user the choice between concise or comprehensive rules.
To show how Anchor rules can be constructed and interpreted, we use anomalous instances
from Participants 1, 10 and 24. We begin with the case where the mood score for Participant
1 increases from three to five within 19 h and use a maximum of five features to construct
the rules:

IF [(past − day − f ats ≤ 11.40 items) ∧ (GLbias − dACC > 0.00)] THEN;

Depressed = 3

Precision : 1

Coverage : 0.20

IF [(past − day − sugars > 25.00 items) ∧ (distracted > 5.00) ∧ (cumm − step − calorie ≤ 285.62)]

THEN; Depressed = 5

Precision : 0.95

Coverage : 0.03

(3)

Equation (3) shows the conditions/rules on the features needed to ensure that the mood-
score prediction (Depressed in the equation) changes from three to five, where GLbias − dACC
is the neural activity in the dACC brain region corresponding to bias for frequent gains
(see the appendices section in [24]). The first set of conditions pertains to the case when the
mood score is three, and the second set is when the score is five. Furthermore, the precision
and coverage values in the Anchors in Equation (3) say that the Anchors applied to 20%
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(3% (in the second set of conditions)) of the perturbation-space instances and 100% (95%) of
those instances conformed to the rule, i.e., had a prediction of three (five). Higher precision
and coverage imply greater fidelity of Anchor rules to the model behaviour.

If we compare the Anchors, we observe that less physical activity, being more dis-
tracted and consuming significant amounts of sugary food items (more than 25) are associ-
ated with a high mood score/depressive mood. Also, it appears that having fewer fatty
food items helps keep the mood score (depression) moderately low (at three). Next, we
look at the instance when the mood score for Participant 24 increases from 0 to 4 in 4 h
and use two as the maximum number of features to use when constructing the rules (see
Equation (4)):

IF [(distracted ≤ 2.84) ∧ (past − day − f ats ≤ 3.28 items)] THEN;

Depressed = 0

Precision : 0.98

Coverage : 0.38

IF [(past − day − ca f f eine > 5.32 servings) ∧ (MeanBreathingTime ≤ 3.38)] THEN;

Depressed = 4

Precision : 0.58

Coverage : 0.01

(4)

Equation (4) shows that having more than five servings of coffee and breathing faster
than 3.38 s per breath contributes to a sudden increase in the mood score (increase from
0 to 4 in 4 h), whereas being less distracted and consuming less fatty items is associated
with a very low mood score of 0. Decreasing coffee and fat intake and breathing exercises
could help this participant keep sudden variations in their mood scores in check. Finally,
we look at the instance when the mood score for Participant 10 decreases from four to two
in 11 h. We present the Anchors rules with better precision and coverage between five and
two maximum features (Equation (5)):

IF [(anxious > 4.04) ∧ (distracted ≤ 2.94)] THEN;

Depressed = 4

Precision : 0.80

Coverage : 0.08

IF [( f o − le f tDLPFC > 0.00) ∧ (anxious ≤ 2.03) ∧ (heart − rate ≤ 88.16)] THEN;

Depressed = 2

Precision : 1

Coverage : 0.08

(5)

We can gather from Equation (5), where f o − le f tDLPFC is the neural activity in the
left DLPFC brain region evoked by the Face Off emotion bias task, that having low anxiety
and a low heart rate is associated with a low mood score of two, whereas having an anxiety
level of more than four contributes to a higher mood score. Clearly, for Participant 10,
keeping anxiety levels low is key to managing depression.

Although Anchor rules provide good human-readable explanations to instances, it
may be difficult to find rules if the maximum number of features chosen to construct the
rules is insufficient. The second rule in Equation (4) is an excellent example of this situation
with a precision of only 58%. Increasing the maximum feature size could help increase the
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precision and our confidence in the rule. Also, finding more Anchors around the anomaly
and future anomalies should provide a good idea of what feature variations lead to a
change in the mood score. A similar strategy can also be adopted for other participants to
explain normal instances. We could also extend the use of Anchors to describe a period
of unusual mood scores by explaining all instances within the period and finding the
common rules within the instances. A similar analysis can be obtained for participants not
presented here.

4. Discussion and Conclusions

Depression affects a large population worldwide and has a substantial global health-
care burden [2,69]. With the amount of technology around us, we are generating significant
amounts of data. The recent literature has focussed on using data-driven methodologies to
create predictive models for depression [14–19,21,25–31]. With the variability seen among
depressed people [33,34], personalised predictive models have been suggested in recent
years [11].

Hence, we proposed a novel explainable framework to utilise multimodal data to
build personalised and explainable Deep Learning (DL) models for people experiencing
depression. To illustrate the framework, we used a dataset with 14 mild to moderately
depressed participants from a previously published work [24]. The dataset, collected over
one month, contained activity data from a smartwatch, diet and mood-assessment reports
from Ecological Momentary Assessments (EMAs) and neurocognitive data from in-person
sessions. We preprocessed the raw data through multiple data-imputation schemes and
trained both classification- and regression-based MLP (Multilayer Perceptron) models
to produce predictions of mood scores—a discrete score based on the severity of their
depressive symptoms.

The models are optimised through eight Evolutionary and Statistical optimisation
algorithms to find the hyperparameters that offer the best model performance evaluated
by using a five-fold Cross-Validation model training routine to obtain a robust estimate
of the model performance. We compared this performance against ten classical ML-based
baseline models and showed how the MLP models outperformed the baseline models. The
best-performing MLP models were further analysed by using SHAP (Shapley Additive
Explanations) [41] and ALE (Accumulated Local Effects) [67] plots to extract the top fea-
tures/indicators that influenced the model and reveal the associations between the top
feature indicators and depression. Moreover, we demonstrated how rule-based explana-
tions predicated on features could be generated from the models by using Anchors [68]. Such
explanations can potentially guide clinical or self-management interventions for depression.

Our work differs from previous research on explainable depression modelling through
mood-score prediction in many ways. Works like [35,70] perform an analysis on cross-
sectional datasets, whereas we use a longitudinal dataset. Moreover, most studies, like [21,25],
employ simple ML to build predictive models for depression, and studies that employ DL,
like [26,28], do not employ a parallel, multiple Evolutionary Algorithm-based optimisation
scheme to optimise the model hyperparameters. Furthermore, most studies like [46–49] use
explainability to develop population-level explanations of various mental health disorders,
while our work produces personalised insights.

The work by Shah et al. [24] shares the most similarity with our work and develops
personalised mood-prediction models on the same dataset and uses methods from the
explainable AI literature [36]. However, it uses it primarily to extract features (using SHAP)
that have the most influence on the model’s prediction of the mood/depression score. We
extend their work by using Accumulated Local Effects (ALE) plots to show how changes in
the value of such features influence the model’s prediction of mood scores. We pipeline
SHAP and ALE to show how the top wearable- and EMA-based features affect mood scores.
We focus on these features as their trends allow one to suggest interventions based on
lifestyle, such as diet and activity, as they can be monitored comfortably in real time in a
person’s usual environment. We further generate rule-based (IF–THEN) explanations for
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instances showing sudden changes in the mood score (increase or decrease in depression)
using Anchors. These rule-based explanations include bounds on features, which can be
used to quantify interventions by using those features.

In general, we found that the MLP models were better able to learn the representations
between the input features and the mood score. Although the model-hyperparameter
search methodology differed between the MLP and the base models, the results indicate
how powerful MLP models (a comparatively simple DL method) are at learning meaningful
representations for mood scores from digital data. Moreover, our results on the top-five
features for individuals slightly differed from that in [24] due to the differences in model
types, data preprocessing and feature design. Interestingly, the results for the population-
level top-five features were similar to that in [24], with diet- and anxiety-related features
being the most frequent top-five features.

We also found that SHAP and ALE plots had the potential to help clinicians find the
most influential features/indicators for intervention and how their values influence the
mood score. Moreover, human-readable rules from Anchors could help clinicians obtain a
quantitative estimate of feature limits (range) for individual predictions of mood scores in
depressed individuals. By observing the feature ranges in the rules over time, a clinician
could advise interventions focussed on certain activities and food items. The numerical
bounds in the rules should help determine the limits for such interventions.

The overall framework presented in this work can be extended to other kinds of
modelling approaches, data types and optimisation schemes; however, the results presented
in this study are limited by the dataset (quality and quantity) used and some of the
shortcomings of the explainability approaches used. The dataset for some participants has
missing and invalid data. Even though the data-imputation schemes handled both issues,
a complete dataset for those participants could have yielded more performant models and
better explanations.

Moreover, one of the pitfalls when analysing models by using explainable methods is the
need for clarity between causation and association. All explainability methods discussed
here only provide information on the association, not causation. For instance, if an increase
in the feature anxious is seen to increase the mood score in an ALE plot, we cannot say that
being more anxious causes a participant to be more depressed. It could be the case that an
increase in depression causes an increase in anxiety for that participant. Therefore, all we
can say is that an increase in anxiety is associated with an increase in depression.

Furthermore, explainability methods are model-based, and the explanations produced
are explanations for the model and not the underlying data distribution. This implies that
if the model is poor, the explanations produced by using the model will not be reliable
either. Thus, for the two participants (Participant 19 and Participant 21), where our models
had a high MAPE value, the explanations (important features and feature trends) may be
unreliable. Also, there may be instances where the explanations obtained from one of the
three methods discussed in this work may seem counterintuitive. In such instances, we
propose validating the results through the remaining two explainability methods.

Personalised models for depression by using wearable and other relevant data provide
an opportunity for personalised treatment approaches as long as data of good quality and
quantity are available and the pitfalls associated with using model-explainability methods
are understood. Accurate, personalised models and the explanations generated from
them can help build associations between individual activities and depression severity,
assisting medical professionals and patients in managing depression through targeted
interventions. This work presents a framework to achieve this. In the future, a combination
of cross-sectional and longitudinal methodologies could solve the data quantity problem.
Also, work on incorporating other modalities of data, such as speech and facial emotions,
and different kinds of models, such as timed DL models, could improve the predictive
models further.
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Appendix A

Appendix A.1. Data Information

Appendix A.1.1. Data Preprocessing

As different data-preprocessing methods have advantages and disadvantages, we try
three data-preprocessing methods and build models for each to compare which method
suits the dataset.

For the first method, we use Deletion as follows:

• Identify participants for whom we have constant feature values for features acquired
from the smartwatch—call it set C. Remove participants in C.

• Identify (from remaining participants) those participants for whom we have missing
data points—call it set M. For participants in M, remove the samples containing the
missing data points.

For the second method, we use a Manual Imputation technique by using a set of
differentiated data-preprocessing steps as follows:

• Identify participants for whom we have constant feature values for features acquired
from the smartwatch—call it set C. Remove the features with constant values for
participants in C

• Identify participants for whom we have missing data points—call it set M. For partici-
pants in M, identify the features with missing data points—call it set F.

• Identify if the features in set F contain discrete, continuous or neurocognitive values.
• For discrete features, the missing values are filled with the most frequent value.
• For continuous features, the missing values are imputed by using an Iterative Imputer

(see Table 3).
• For neurocognitive features, we fill in the missing values with zero.

For the third method, we employ Automatic Imputation by using a set of sophisticated
data-preprocessing steps as follows:

• Identify participants for whom we have constant feature values for features acquired
from the smartwatch—call it set C. Remove the features with constant values for
participants in C

• Identify participants for whom we have missing data points—call it set M. For partici-
pants in M, identify the features with missing data points—call it set F.

• For each feature in F, fill in the missing values with multiple data-imputation methods,
one at a time.

• Choose the data-imputation method that gives a data distribution that best matches
the data distribution before any preprocessing.

In Automatic Imputation, we compare the methods by using the distribution of
the filled-in feature and the original feature vectors. For this, we use the two-sample
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Kolmogorov–Smirnov (KS) test, which compares two distributions by finding the maxi-
mum difference between the Cumulative Distribution Functions (CDFs) of the two dis-
tributions [58]. In general, the KS test is used to compare the underlying continuous
distributions F(x) and G(x) of two independent samples. This statistical test uses the null
hypothesis that the two distributions are identical, i.e., F(x) = G(x) for all x. The alternative
hypothesis is that they are not identical. The test produces a statistic and a p-value [71]. The
statistic obtained from the test is the maximum absolute difference between the empirical
distribution functions of the samples.

We choose a confidence level of 95%; i.e., we reject the null hypothesis in favour of
the alternative if the p-value is less than 0.05. The higher the p-value, the more probable
the fact that the two distributions (i.e., before and after data filling) are similar. Thus, we
choose a method with the highest p-value and lowest statistic. As different methods are
chosen for different features for every participant, we decided against reporting them here
to maintain the succinctness of the paper.

Appendix A.1.2. Correlation Plot
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Figure A1. This figure shows the correlation plot for all the input features and output feature used in
the models with each other. The bar on the right shows which colour corresponds to which value of
correlation. We use Spearman Rank correlation.
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Appendix A.2. MLP Model Hyperparameters

Table A1 shows the combination of the data-preprocessing methodology, the problem
type and the metric used to optimise the model hyperparameters. The optimiser for which
we obtain the overall best model is also provided. Table A2 shows the model parameters
for the overall best models. It presents the number of neurons in the DNN, the activation
used in the layers and the batch size used during the training of the models. The table
shows that most models have at least three layers (two hidden layers and one output layer)
and use either a ReLU or a linear activation. However, for Participants 15, 18 and 28, the
DNN only has one hidden layer. Furthermore, a batch size of six or four samples works
best with most participants.

Table A1. Combinations yielding the overall best models. Metric refers to the metric used to optimise
the model hyperparameters, and Optimiser refers to the best optimiser (used for hyperparameter
optimisation) corresponding to the overall best model. (BA: balanced-accuracy, F1: F1-score, MAE:
Mean Absolute Error and MAPE: Mean Absolute Percentage Error).

Participant Data Preprocessing Problem Type Optimiser Metric

1 Deletion Classification DE BA
10 Manual Imputation Classification Bayesian F1
12 Deletion Regression CMA-DE MAE
14 Deletion Regression PSO MAE
15 Manual Imputation Regression PSO MAE
18 Manual Imputation Classification Bayesian BA
19 Deletion Classification Bayesian BA
20 Deletion Classification DE BA
21 Manual Imputation Regression ES MAE
23 Manual Imputation Classification DE BA
24 Automatic Imputation Classification Bayesian F1
26 Manual Imputation Regression PSO MAE
28 Deletion Classification PSO F1
29 Deletion Classification Bayesian F1

Table A2. Parameters of the overall best models. Neurons column contains the neurons for each layer
(hidden + output layers) in the DNN. ReLU: Rectified Linear Unit, ELU: Exponential Linear Unit,
tanh: hyperbolic tangent and Linear: no nonlinear activation.

Participant Neurons Activation Batch Size

1 {38, 7} ReLU 6
10 {60, 33, 7} Linear 8
12 {46, 31, 16, 1} Linear 4
14 {30, 20, 10, 1} ReLU 4
15 {48, 1} ReLU 6
18 {52, 7} Linear 6
19 {35, 21, 7} Linear 6
20 {45, 32, 19, 7} ELU 6
21 {50, 25, 1} Tanh 4
23 {36, 21, 7} ReLU 8
24 {51, 29, 7} Linear 6
26 {46, 31, 16, 1} ReLU 4
28 {60, 7} ReLU 8
29 {51, 36, 21, 7} ReLU 4

Appendix A.3. Base-Model Hyperparameters

The grid search is implemented in Python by using a combination of Python libraries.
The Scikit-learn [72,73] library is used for the modelling, and further information on the
model parameters reported in the following subsections can be found on their API page.
The following sections contain information about the grid search parameters and the results
of the search.
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Appendix A.3.1. Adaboost Classifier

The grid search parameter sets are as follows. Estimators ∈ {50, 100, 200}, Learning
Rate ∈ {0.5, 1, 2, 10}, and Algorithm ∈ {‘SAMME’, ‘SAMME.R’}.

Table A3. Parameters of the Adaboost Classifier for the best model after grid search.

Participant Data
Preprocessing Estimators Learning Rate Algorithm

1 Impute 200 1 SAMME.R
10 Preprocessed 50 0.5 SAMME
12 Deletion 100 0.5 SAMME.R
14 Deletion 200 2 SAMME.R
15 Deletion 200 0.5 SAMME
18 Impute 200 10 SAMME
19 Deletion 50 0.5 SAMME
20 Deletion 200 1 SAMME
21 Preprocessed 50 2 SAMME
23 Impute 200 10 SAMME.R
24 Deletion 50 1 SAMME.R
26 Impute 100 0.5 SAMME
28 Deletion 50 0.5 SAMME
29 Deletion 100 1 SAMME

Appendix A.3.2. Adaboost Regressor

The grid search parameter sets are as follows. Estimators ∈ {50, 100, 200}, Learning
Rate ∈ {0.5, 1, 2, 10}, and Loss ∈ {linear, square, exponential}.

Table A4. Parameters of the Adaboost Regressor for the best model after grid search.

Participant Data
Preprocessing Estimators Learning Rate Loss

1 Deletion 50 2 Exponential
10 Preprocessed 50 0.5 Exponential
12 Deletion 100 1 Square
14 Deletion 50 0.5 Exponential
15 Deletion 200 2 Linear
18 Preprocessed 50 2 Linear
19 Impute 50 0.5 Linear
20 Deletion 200 2 Linear
21 Deletion 50 1 Square
23 Preprocessed 200 10 Exponential
24 Deletion 50 1 Square
26 Preprocessed 100 10 Exponential
28 Impute 100 10 Exponential
29 Deletion 50 1 Square

Appendix A.3.3. Elasticnet Regressor

The grid search parameter sets are as follows. Alpha ∈ {0.5, 1, 2, 10}, L1-Ratio ∈
{0, 0.5, 1}, and Selection ∈ {random, cyclic}.
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Table A5. Parameters of the Elasticnet Regressor for the best model after grid search.

Participant Data
Preprocessing Alpha L1-Ratio Selection

1 Impute 2 0 Cyclic
10 Impute 0.5 0 Cyclic
12 Deletion 0.5 0 Random
14 Deletion 0.5 0.5 Random
15 Preprocessed 10 0 Cyclic
18 Deletion 1 0 Random
19 Deletion 1 0 Random
20 Deletion 2 0 Cyclic
21 Impute 10 0 Cyclic
23 Deletion 0.5 0.5 Cyclic
24 Deletion 10 0 Cyclic
26 Impute 0.5 0 Cyclic
28 Deletion 1 0 Random
29 Deletion 10 0 Cyclic

Appendix A.3.4. Gradient Boosting Classifier

The grid search parameter sets are as follows. Loss ∈ {log-loss}, Learning Rate ∈ {0.05,
0.1, 1, 10}, Estimators ∈ {50, 100, 200}, Criterion ∈ {Friedman MSE, squared error}, and
CCP-Alpha ∈ {0.0, 1, 10}.

Table A6. Parameters of the Gradient Boosting Classifier for the best model after grid search.

Participant Data
Preprocessing Loss Learning Rate Estimators Criterion CCP-Alpha

1 Deletion log-loss 0.05 50 Friedman MSE 0.0
10 Impute log-loss 0.05 50 Friedman MSE 0.0
12 Deletion log-loss 0.05 50 Friedman MSE 0.0
14 Preprocessed log-loss 0.05 50 Friedman MSE 1
15 Impute log-loss 0.05 100 Friedman MSE 10
18 Deletion log-loss 0.05 50 Friedman MSE 0.0
19 Deletion log-loss 0.1 200 Friedman MSE 0.0
20 Deletion log-loss 10 100 Squared error 0.0
21 Deletion log-loss 0.1 50 Squared error 1
23 Preprocessed log-loss 0.05 200 Squared error 1
24 Deletion log-loss 0.1 200 Squared error 1
26 Preprocessed log-loss 0.05 50 Squared error 10
28 Impute log-loss 0.05 200 Friedman MSE 1
29 Preprocessed log-loss 0.05 50 Squared error 1

Appendix A.3.5. Support Vector Regressor

The grid search parameter sets are as follows. C ∈ {0.1, 1, 5, 10}, Kernel ∈ {linear, poly,
rbf, sigmoid}, Degree ∈ {2, 3, 4, 5}, and Gamma ∈ {0.1, 1, scale, auto}.
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Table A7. Parameters of the Support Vector Regressor for the best model after grid search.

Participant Data
Preprocessing C Kernel Degree Gamma

1 Preprocessed 0.1 sigmoid 0 auto
10 Impute 1 sigmoid 0 auto
12 Deletion 1 rbf 0 0.1
14 Deletion 5 rbf 0 auto
15 Deletion 0.1 sigmoid 0 auto
18 Preprocessed 5 sigmoid 0 0.1
19 Deletion 0.1 sigmoid 0 0.1
20 Deletion 0.1 poly 4 scale
21 Preprocessed 1 poly 4 scale
23 Impute 0.1 poly 2 auto
24 Impute 5 linear 0 scale
26 Preprocessed 0.1 poly 5 scale
28 Deletion 1 poly 2 scale
29 Deletion 1 poly 2 0.1

Appendix A.3.6. Gradient Boosting Regressor

The grid search parameter sets are as follows. Loss ∈ {squared error, absolute error,
huber, quantile}, Learning Rate ∈ {0.05, 0.1, 1, 10}, Estimators ∈ {50, 100, 200}, Criterion ∈
{Friedman MSE, squared error}, and CCP-Alpha ∈ {0.0, 1, 10}

Table A8. Parameters of the Gradient Boosting Regressor for the best model after grid search.

Participant Data
Preprocessing Loss Learning Rate Estimators Criterion CCP-Alpha

1 Preprocessed Absolute error 0.05 50 Squared error 0.0
10 Preprocessed Squared error 0.05 50 Squared error 0.0
12 Deletion Absolute error 0.1 200 Friedman MSE 0.0
14 Impute huber 0.1 200 Friedman MSE 0.0
15 Preprocessed Absolute error 1 50 Squared error 10
18 Preprocessed Absolute error 1 50 Squared error 1
19 Impute Squared error 0.05 100 Friedman MSE 0.0
20 Deletion Absolute error 0.05 50 Friedman MSE 1
21 Deletion Absolute error 1 100 Squared error 10
23 Impute Absolute error 0.1 50 Friedman MSE 10
24 Deletion Absolute error 10 50 Friedman MSE 10
26 Preprocessed Absolute error 1 50 Squared error 10
28 Preprocessed Absolute error 0.1 50 Squared error 1
29 Deletion Absolute error 1 50 Friedman MSE 0.0

Appendix A.3.7. Random Forest Classifier

The grid search parameter are as follows. Estimators ∈ {50, 100, 200}, Criterion ∈ {gini,
entropy, log-loss}, Max Depth ∈ {None, 5, 10, 20}, Min-Samples-Split ∈ {2, 5, 10}, and Max
Features ∈ {sqrt, log2, None}.
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Table A9. Parameters of the Random Forest Classifier for the best model after grid search.

Participant Data
Preprocessing Estimators Criterion Max Depth Min-Samples-

Split Max Features

1 Preprocessed 200 log-loss 10 10 sqrt
10 Preprocessed 200 log-loss 5 2 None
12 Deletion 100 log-loss 5 2 None
14 Deletion 200 entropy 20 2 sqrt
15 Deletion 50 log-loss 20 5 log2
18 Impute 50 entropy 20 5 None
19 Deletion 50 entropy 5 2 None
20 Deletion 100 log-loss 5 5 sqrt
21 Deletion 100 log-loss None 2 sqrt
23 Deletion 200 entropy 5 10 log2
24 Deletion 200 log-loss 20 5 None
26 Deletion 100 gini 5 5 log2
28 Deletion 200 gini 5 10 sqrt
29 Deletion 200 gini 20 2 None

Appendix A.3.8. Poisson Regressor

The grid search parameter sets are as follows. Alpha ∈ {0.5, 1, 2, 10}, Solver ∈ {lbfgs,
Newton–Cholesky}, and Max-Iteration ∈ {100, 200, 500}.

Table A10. Parameters of the Poisson Regressor for the best model after grid search.

Participant Data
Preprocessing Alpha Solver Max-Iteration

1 Impute 10 lbfgs 500
10 Impute 2 lbfgs 200
12 Deletion 2 lbfgs 500
14 Impute 1 Newton–Cholesky 200
15 Deletion 10 lbfgs 500
18 Preprocessed 10 Newton–Cholesky 100
19 Deletion 2 lbfgs 500
20 Deletion 10 lbfgs 500
21 Deletion 10 lbfgs 200
23 Preprocessed 10 Newton–Cholesky 500
24 Deletion 10 lbfgs 500
26 Impute 2 lbfgs 500
28 Impute 2 lbfgs 200
29 Deletion 10 Newton–Cholesky 200

Appendix A.3.9. Support Vector Classifier

The grid search parameter sets are as follows. C ∈ {0.1, 1, 5, 10}, Kernel ∈ {linear, poly,
rbf, sigmoid}, Degree ∈ {2, 3, 4, 5}, and Gamma ∈ {0.1, 1, scale, auto}.
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Table A11. Parameters of the Support Vector Classifier for the best model after grid search.

Participant Data
Preprocessing C Kernel Degree Gamma

1 Preprocessed 5 poly 2 auto
10 Preprocessed 10 rbf 0 0.1
12 Deletion 1 sigmoid 0 0.1
14 Deletion 0.1 linear 0 scale
15 Preprocessed 0.1 rbf 0 auto
18 Impute 0.1 poly 2 scale
19 Deletion 5 linear 0 auto
20 Deletion 1 sigmoid 0 auto
21 Preprocessed 1 poly 4 auto
23 Deletion 0.1 sigmoid 0 scale
24 Impute 10 rbf 0 scale
26 Preprocessed 0.1 rbf 0 auto
28 Preprocessed 1 rbf 0 scale
29 Deletion 5 poly 4 scale

Appendix A.3.10. Random Forest Regressor

The grid search parameter sets are as follows. Estimators ∈ {50, 100, 200}, Criterion
∈ {squared error, absolute error, Friedman MSE, Poisson}, Max Depth ∈ {None, 5, 10, 20},
Min-Samples-Split ∈ {2, 5, 10}, and Max Features ∈ {sqrt, log2, None}.

Table A12. Parameters of the Random Forest Regressor for the best model after grid search.

Participant Data
Preprocessing Estimators Criterion Max Depth Min-Samples-

Split Max Features

1 Impute 50 Absolute error 5 2 log2
10 Impute 200 Poisson 5 10 None
12 Deletion 50 Friedman MSE 10 5 log2
14 Deletion 50 Absolute error 10 5 log2
15 Preprocessed 50 Squared error None 10 log2
18 Deletion 50 Absolute error 5 2 log2
19 Preprocessed 50 Poisson 20 2 sqrt
20 Deletion 50 Poisson 10 5 sqrt
21 Deletion 50 Absolute error 20 10 log2
23 Deletion 100 Absolute error 5 2 log2
24 Deletion 50 Absolute error 5 10 log2
26 Preprocessed 200 Absolute error 5 2 log2
28 Preprocessed 200 Absolute error 5 10 sqrt
29 Deletion 50 Friedman MSE 5 2 sqrt

Appendix A.4. Explainability Methods

Appendix A.4.1. SHAP

The goal of SHAP is to explain a prediction (a single prediction) of a data instance
by computing the contribution of each feature to the prediction. It uses coalitional game-
theory principles to calculate how to distribute the payout among the features equitably. It
computes how much each feature contributes to the model prediction for a data instance.
SHAP values are a linear approximation to the Shapley values. To calculate the SHAP value
for a test instance, the method replaces arbitrary combinations of features (from the test
instance) with data from a background dataset. Arbitrarily changing the values of certain
features and monitoring the change in model prediction gives a sense of how important a
feature is, as important features will produce a more significant change in model prediction.

Thus, we obtain one SHAP value per data instance per feature. Also, the SHAP
values are computed in relation to the average model prediction. Thus, a SHAP value of
−0.2 for a feature in a data instance, for instance, would mean that the model prediction
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decreases by 0.2 from the average for a change in that feature. The background dataset
is used to compute the average model prediction, and the average is computed over the
entire background dataset. The SHAP values from all features combine to the difference
between the prediction and the average prediction. Moreover, to compute the global feature
importance for a model and a dataset, we take the mean of the absolute SHAP values for
all instances in the dataset.

As we use a five-fold Cross-Validation approach, we find the SHAP values for each
fold and combine them in the end. Specifically, we use the training data for each fold as
the background dataset and the test dataset for each fold for the SHAP value computation.
Once we have the SHAP values for the test dataset of each fold, we sum the SHAP values
across folds to obtain the overall feature importance. Using the test set in five-fold Cross-
Validation ensures no overlapping data instances between folds, and the SHAP values
computed over all the folds cover the entire dataset.

Appendix A.4.2. ALE Plots

ALE plots describe how certain features influence the model prediction. ALE works
well even when features are correlated by providing the individual feature effect uninflu-
enced by any correlated feature effects. As some degree of correlation between features can
be expected, this explanation method is well suited for our dataset and models.

It finds the effect of a feature over a dataset by dividing the feature values into regions
and then using the differences to calculate the average change in the prediction in the local
neighbourhood (within the region). This is termed as local effects. Once the local effects
across all regions have been computed, they are accumulated to obtain the ALE value. The
average of all ALE values from all samples is then subtracted from the accumulated value
to obtain the final ALE value. Thus, the value of the ALE can be interpreted as the main
effect of the feature at a certain value compared to the average prediction of the data. For
instance, an ALE estimate of −2 at xi = 3 means that when the ith feature has a value of
three, the prediction is two less than the average prediction.

The plots show how the feature effect on the prediction varies with the value of the
feature. This gives us an idea of whether a feature’s increase (or decrease) leads to a
corresponding increase (or decrease) in the model prediction compared to the average
prediction. We use the test dataset to compute the ALE value for each fold and find the
overall ALE value by taking the mean of the ALE values obtained for the five folds.

Appendix A.4.3. Anchors

Anchors explain a prediction on the data instance of any black-box classification by
finding a decision rule that Anchors the prediction sufficiently. A rule is said to Anchor
a prediction if changes in other features do not affect the prediction. Anchors use per-
turbations of the data instance to generate local explanations for predictions of black-box
models in the form of IF–THEN rules on the features. Moreover, it includes the notion of
coverage, stating to which other, possibly unseen instances Anchors apply. This is achieved
by generating perturbed samples around the original sample and checking the percentage
of samples to which a rule applies (i.e., the percentage of samples with the same mood
prediction). Finding Anchor rules is a multiarmed bandit problem, and its computation
time increases as the number of features or the number of perturbation samples increase.

We use Anchors to show how specific predictions for classification models can be
explained in a rule-based manner. This makes Anchors a good candidate to explain
anomalous changes in mood. Depending on which fold of the test set the anomalous data
instance comes from, we use randomly upsampled [74] training data of that fold as the
background dataset for generating perturbations. This upsampling is necessary as the
dataset is imbalanced, and an imbalanced dataset can lead to an imbalanced perturbation
space, which may fail to yield Anchors (as some classes may not be represented in the
perturbation space). Furthermore, to produce comprehensive rules, we take into account
all features, including the neurocognitive assessment.
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Appendix A.5. Additional Results

Table A13. Table containing the metrics for the best base-model classification models for each
participant (MAE: Mean Absolute Error, MAE STD: Mean Absolute Error standard deviation, MAPE:
Mean Absolute Percentage Error in %, MAPE: Mean Absolute Percentage Error standard deviation in
% and Part.: participant).

Metric ucsd1 ucsd10 ucsd12 ucsd14 ucsd15 ucsd18 ucsd19

Test MAPE 7.972 18.911 27.901 46.644 14.296 22.048 54.468
Test MAE 0.336 0.697 0.575 0.905 0.467 0.824 1.151

Test MAE STD 0.146 0.113 0.078 0.147 0.115 0.186 0.176
Test MAPE

STD 2.92 5.051 7.483 20.867 5.028 8.075 17.285

Metric ucsd20 ucsd21 ucsd23 ucsd24 ucsd26 ucsd28 ucsd29

Test MAPE 19.758 41.876 38.243 6.736 33.008 19.71 78.578
Test MAE 0.636 1.153 0.884 0.158 1.099 0.61 1.258

Test MAE STD 0.182 0.299 0.308 0.075 0.213 0.173 0.208
test-MAPE

STD 6.854 16.714 6.94 5.124 9.015 6.625 21.659

Table A14. Table containing the metrics for the best base-model regression models for each participant
(MAE: Mean Absolute Error, MAE STD: Mean Absolute Error standard deviation, MAPE: Mean
Absolute Percentage Error in %, MAPE: Mean Absolute Percentage Error standard deviation in %
and Part.: participant).

Metric ucsd1 ucsd10 ucsd12 ucsd14 ucsd15 ucsd18 ucsd19

Test MAPE 8.651 20.701 32.212 54.847 14.296 23.321 60.931
Test MAE 0.37 0.764 0.649 1.045 0.467 0.838 1.072

Test MAE STD 0.131 0.128 0.034 0.326 0.115 0.107 0.172
Test MAPE

STD 2.824 4.73 5.738 29.28 5.028 7.429 19.505

Metric ucsd20 ucsd21 ucsd23 ucsd24 ucsd26 ucsd28 ucsd29

Test MAPE 23.461 61.965 38.243 6.824 33.008 22.96 60.83
Test MAE 0.653 1.2 0.884 0.184 1.099 0.69 1.188

Test MAE STD 0.204 0.205 0.308 0.047 0.213 0.136 0.311
Test MAPE

STD 13.667 8.522 6.94 2.563 9.015 7.414 12.391

Table A15. Table containing the metrics for the best MLP regression models for each participant
(MAE: Mean Absolute Error, MAE STD: Mean Absolute Error standard deviation, MAPE: Mean
Absolute Percentage Error in %, MAPE: Mean Absolute Percentage Error standard deviation in %
and Part.: participant).

Metric ucsd1 ucsd10 ucsd12 ucsd14 ucsd15 ucsd18 ucsd19

Test MAE 0.406 0.734 0.582 0.829 0.494 0.721 1.005
Test MAPE 0.096 0.202 0.223 0.362 0.131 0.187 0.481

Test MAE STD 0.086 0.101 0.063 0.327 0.05 0.112 0.176
Test MAPE

STD 0.017 0.062 0.031 0.179 0.016 0.044 0.133

Metric ucsd20 ucsd21 ucsd23 ucsd24 ucsd26 ucsd28 ucsd29

Test MAE 0.578 1.103 0.97 0.313 1.012 0.648 1.065
Test MAPE 0.199 0.531 0.391 0.222 0.334 0.211 0.591

Test MAE STD 0.144 0.216 0.304 0.074 0.272 0.12 0.19
Test MAPE

STD 0.051 0.117 0.083 0.039 0.107 0.05 0.16
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Figure A2. Cont.
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Figure A2. This figure shows the SHAP value effects for the top-5 features in the overall best models
for all participants. The scatter plots depict the SHAP values for individual samples, with the colour
of the points denoting their magnitude. The bar plots superimposed on top show the mean of the
absolute value of the SHAP values over all data points. Figure continues on next page.
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Figure A3. Cont.
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Figure A3. This figure shows the Accumulated Local Effects (ALE) plots for the top-5 features in the
overall best models for all participants. The x-axis contains the feature values, and the y-axis contains
the ALE values. The ALE values denote the magnitude of the average effect of a feature value on the
model output, i.e., the mood score. Figure continues on next page.
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Table A16. Table containing the metrics for the best MLP classification models for each participant
(MAE: Mean Absolute Error, MAE STD: Mean Absolute Error standard deviation, MAPE: Mean
Absolute Percentage Error in %, MAPE: Mean Absolute Percentage Error standard deviation in %
and Part.: participant).

Metric ucsd1 ucsd10 ucsd12 ucsd14 ucsd15 ucsd18 ucsd19

Test MAE 0.295 0.715 0.532 0.933 0.522 0.638 0.989
Test MAPE 6.155 19.839 26.569 40.624 14.259 18.857 53.204

Test MAE STD 0.151 0.089 0.071 0.306 0.155 0.472 0.096
Test MAPE

STD 2.729 4.426 4.386 28.323 3.418 18.541 12.124

Metric ucsd20 ucsd21 ucsd23 ucsd24 ucsd26 ucsd28 ucsd29

Test MAE 0.455 1.201 0.914 0.125 1.053 0.562 1.03
Test MAPE 13.515 50.35 35.756 5.347 31.769 17.565 47.369

Test MAE STD 0.249 0.272 0.298 0.088 0.349 0.163 0.253
Test MAPE

STD 6.165 10.689 6.494 4.933 9.414 6.398 18.945
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